

Welsh ZE Waste and Recycling Vehicle Programme

LA Engagement Workshop –

Session Chair, Steve Carroll

26th April 2023

ZE Waste and Recycling Vehicle Project

Andrew Bishop, WG Programme Lead Aims to accelerate and de-risk

Access to Support

Mark Brown, Programme Manger

WG net-zero 2030 target

Try before you buy

Steve Carroll, Support Lead
Peter Speers, Project Manager
Vicente Jofre Matamala, LA Liaison Officer and
Technical Support
Sophie Navlor, Data Analyst

Vehicle Purchase Grant Support Shared learning and dissemination

Objectives for Day

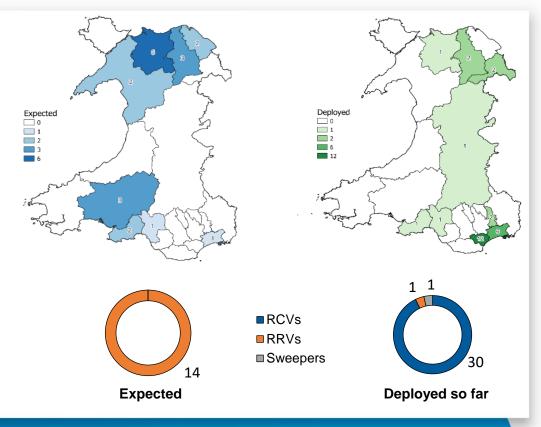
- Share learnings successes and challenges from deploying vehicles
- Discover programme tools and insights available for deployment planning
- Understand local authority support needs

Welsh ULEV – LA Engagement Workshop

Agenda

- 13:30 Welcome and Programme Status
- 13:50 Local Authority Updates Vehicle deployments in Wales
 - Newport, Neath Port Talbot, Denbighshire
- 14:50 Break!
- 15:00 Performance Review, Cenex Learning from a Year of Data
 - Performance Discussion Session
- 15:40 Programme Support Available
 - Support Discussion
- 16:00 Close

Programme Update



Deployment Status

Local Authority	Deployed	Expected
Cardiff	12	
Newport	7	
Denbighshire	2	3
Torfaen	2	
Wrexham	2	
Conwy	1	6
Powys	1	
Swansea	1	
Neath Port Talbot	1	1
Carmarthenshire	3	
Flintshire		2
Vale of Glamorgan		2
Grand Total	32	14

46 Vehicles Funded across

12 Different Local Authorities

Welsh ULEV – LA Engagement Workshop

Deployment Status

26t eRCV

- Providers:
- Dennis Eagle (26)
- Electra (3)
- RVS/Emoss (1)

12t eRRV

- Providers:
- Romaquip (1) (8)
- Terberg (6)

eSweeper

- Providers:
- Bucher (1)

Blue: Deployed Orange: Expected

Support Discussion

To join the Q&A Session please open link in chat.

- Break -

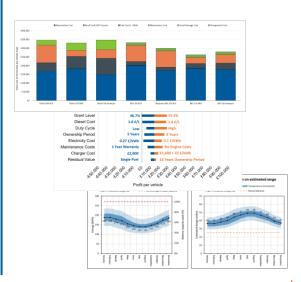
Performance Update – Learning from a Year of Data

Welsh ULEV – LA Engagement Workshop

Data Collection Activities


Automatic Data

- Vehicle Telemetry
- Charging Logs
- Weighbridge Logs


Manual Data

- Onboarding Forms
- Operation Notes

Period Summaries

In-Depth Analysis

Input

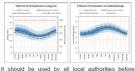
Output

Welsh ULEV – LA Engagement Workshop

Data Collection Activities

Automatic Data

- Vehicle Telemetry
- Charging Logs
- Weighbridge Logs

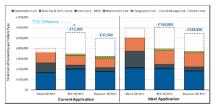

Manual Data

- Onboarding Forms
- Operation Notes

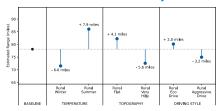
Support Tools

Vehicle Energy Consumption Model – For fleet/waste managers to estimate how much battery they could use based on their round characteristics, and for energy managers to understand the amount of energy required to charge the vehicle each day.

it should be used by an local authorness before trialling and deploying eRCVs to make sure the battery is sufficient for their needs, and they understand how energy might vary across the year. ZE Vehicle Catalogue – For fleet/waste managers to reduce research time on ULEV RCVs, RRVs, and Sweepers available in the market.


The catalogue is updated every quarter, to ensure that time is saved for all fleets. All technologies are available for fleet wide deployments or trials.

Bespoke Support from Cenex - Cenex provides support as part of the programme, any LA can request advice in planning, acquisition, and deployment of low emission vehicles and their required infrastructure.



Fleet reviews, Infrastructure assessment, and operational advice can alleviate the load on the LA and accelerate ULEV transition.

Improving Economic Performance

Vehicle Performance Analysis

Input Output

FY 21/22			FY 22/23					
		Q1	Q2	Q3	Q4	Q1	Q2	Q3
	RCV	4	7	11	13	24	25	26
Vehicles Deployed	RRV	0	0	0	0	0	0	1
Dopioyou	Sweeper	0	0	0	0	1	1	1
Energy Us	ed ¹	12,900 kWh	41,000 kWh	79,700 kWh	127,400 kWh	206,800 kWh	323,800 kWh	459,600 kWh
Diesel Sav	ed	3,400 L	9,700 L	19,300 L	32,200 L	51,400 L	85,900 L	115,100 L
Emission	WTW CO ₂	8 t	21 t	41 t	70 t	107 t	185 t	242 t
s Saved	NOx	14 kg	37 kg	72 kg	161 kg	302 kg	503 kg	693 kg
	PM	59 g	170 g	337 g	601 g	1,027 g	1,660 g	2,280 g

		Operating Hours	Daily Energy from Grid ²	Daily Battery Use	Energy Efficiency ³	Daily Miles Driven	Theoretical Mileage ⁴
Cardiff	RCV	9.0 h	146 kWh	42%	$0.26 {}^m/_{kWh}$	33 m	69 m
Neath Port Talbot	Sweeper	6.1 h	160 kWh	68%	$0.19 {}^m/_{kWh}$	27 m	35 m
Newport	RCV	7.9 h	159 kWh	46%	$0.18 {}^m/_{kWh}$	26 m	50 m
Powys	RCV	13.1 h	196 kWh	57%	$0.24 {}^{m}/_{kWh}$	37 m	65 m
Swansea	RCV	6.7 h	136 kWh	39%	$0.30 {}^m/_{kWh}$	35 m	80 m
Torfaen	RCV	7.5 h	168 kWh	49%	$0.17 ^{m}/_{kWh}$	26 m	47 m
Average	е	8.2 h	153 kWh	45%	$0.23 {}^m/_{kWh}$	29 m	61 m

Deployments

- 460,000 kWh
- 115,000 I diesel saved
- 242 t CO2, 700 kg NOx, 3kg PM saved

Avg. eRCV stats

- 39 57% SoC used per day
- 26 33 miles per day
- 0.17 0.3 miles/kWh
- 47 80 miles max. range

Welsh ULEV – LA Engagement Workshop

Overall Performance Stats

Configuration: 26t 6x2 Rear Steer

Battery Capacity: 300 kWh (270 kWh usable)

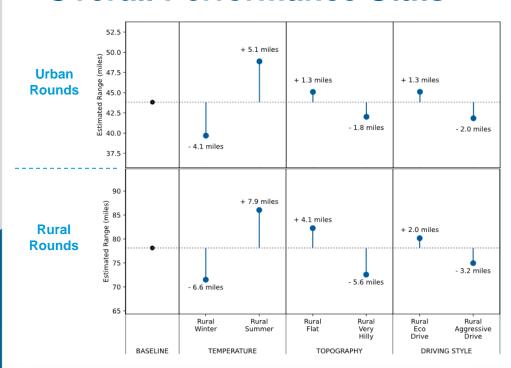
Motor Power: 200 kW motor

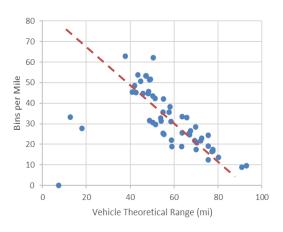
Charge time: 6.75 h (20 – 100%)

Avg. drive efficiency: 0.23 $mi/_{kWh}$ (real-world)

Urban collection range: ~ 40 miles (real-world)

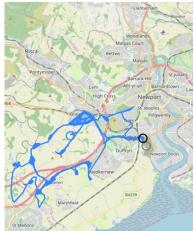
Rural collection range: ~ 80 miles (real-world)





Overall Performance Stats

<u>Bin Collection Density vs</u> Vehicle Range

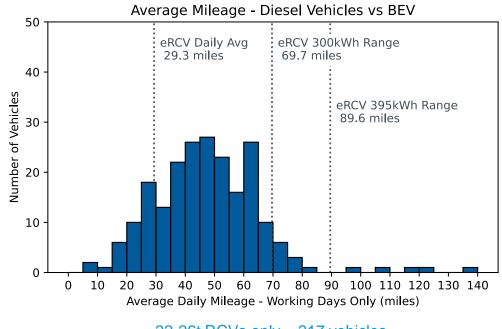


Deep Dive – Dennis Eagle eCollect in Newport

eRCV Operations - Deep Dive

Example – Urban Collection				
Bins Collected	2,018			
Distance Driven	16 miles			
Energy Consumed	113 kWh			
Battery Remaining	62%			
Avg. Speed	1.7 mph			
Estimated Range	38 miles			

Example – Rural Collection				
Bins Collected	701			
Distance Driven	42 miles			
Energy Consumed	141 kWh			
Battery Remaining	53%			
Avg. Speed	5.4 mph			
Estimated Range	80 miles			



Suitability of eRCVs Across the Welsh Fleet?

- Theoretical range of 300kWh 26t eRCVs as currently driven would cover 92% of 22-26t diesel RCVs.
- A larger 395 kWh battery is estimated to cover 97% of 22-26t diesel RCVs.

22-26t RCVs only – 217 vehicles

Welsh ULEV – LA Engagement Workshop

Deep Dive – Bucher V65e Sweeper in NPT

Bucher Truck Mounted Sweeper Specifications*

Configuration: 16t 4x2

Battery Capacity: 200 kWh (200 kWh usable)

Hopper Volume: 6.5 m³

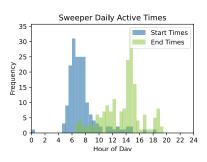
Charge time: 5 h (20 – 100%)

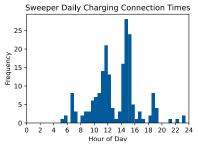
Avg. drive efficiency: 0.19 $^{mi}/_{kWh}$ (real-world)

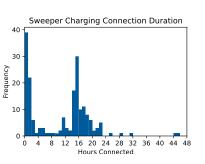
Typical Range: 25 – 50 Miles (real-world)

Typical Operation Time: 6 – 10 Hours (real-world)

^{*}All data collected for the Bucher Sweeper is limited to Neath Port Talbot during a period of 6 months.


Deep Dive – Bucher V65e Sweeper in NPT

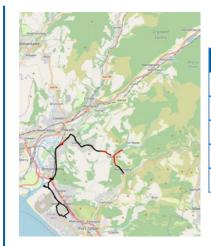

<u>eSweeper Operations in NPT*</u>


The Sweeper appears to be well utilised with daily battery use varying from 43 – 83%, with an average of 68%.

	Distance Travelled	Total Time Moving	Time Sweeping	Battery % SoC use	Load Collected
Typical Daily Range	16 - 42 miles	4.0 - 6.7 hrs	36 - 63%	43 – 83%	1.3 - 5.2 t
Daily Average	27 miles	5.6 hrs	53%	68%	2.7 t

- The vehicle is typically operated for ~6-7 hour shifts.
- The vehicle is often charged overnight from the end of its shift.
- Frequently recharged for a short session in the middle of a shift.

*All data collected for the Bucher Sweeper is limited to Neath Port Talbot during a period of 6 months.



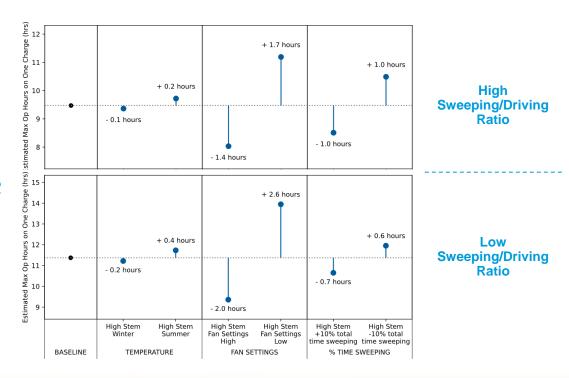
Deep Dive – Bucher V65e Sweeper in NPT

<u>eSweeper Operations – Deeper Dive</u>

27/10/22 - Higher Consumption Day				
Total Distance	65 miles			
Active Time (ignition on)	6 hrs 14 min			
Battery Used	90%			
% Time Sweeping	49%			
Average Consumption	28.9 kWh/h			

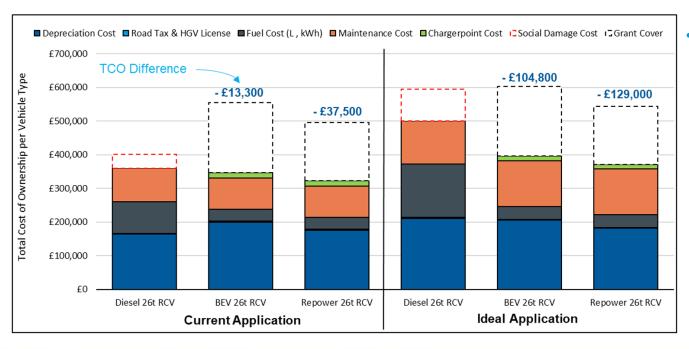
04/11/22 - Lower Consumption Day				
Total Distance	23 miles			
Active Time (ignition on)	7 hrs 31 min			
Battery Used	64%			
% Time Sweeping	30%			
Average Consumption	17.0 kWh/h			

- Travel
- Active Sweeping



Deep Dive – Bucher V65e Sweeper in NPT

<u>Temperature, Fan Settings, and</u> <u>Time Sweeping Effects on Range</u>



Pushing the Performance Window

 The vehicles are underutilized currently.

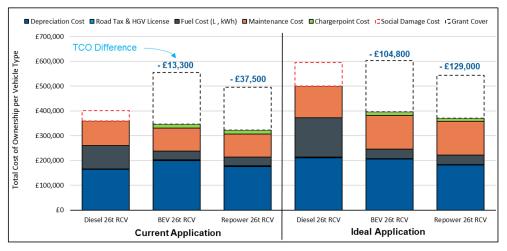
Current OPEX Savings:

£7,100

Potential OPEX Savings:

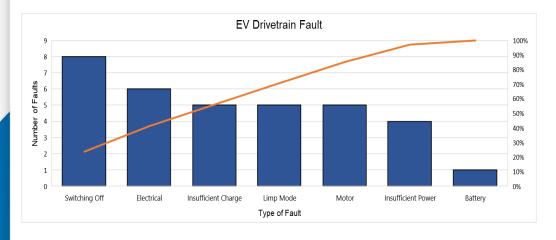
£14,200

Improving vehicle
utilization could increase
TCO savings by ≈500%



Pushing the Performance Window

- Charging using night rate electricity would save a further £1,700 per annum (annual mileage of 7,700 miles).
- Increasing the annual mileage would further increase fuel savings by £5,100 and emissions savings by 31% per annum.
- Repowered eRCVs have proved to be equally reliable, while being £70,000 cheaper than the new eRCVs.
- Investment on driver training has the potential to save £1,500 per annum.
- Increasing planned vehicle lifetimes (from 7 to 9 years) has the potential of further increasing fuel savings by £26,000 and £2,600 in engine related maintenance. Despite the higher maintenance costs.



Reliability Learnings

	Planned	Unplanned	Total Availability
Average Diesel	87.5%	89.3%	78.2%
Average Electric	93.1%	84.9%	78.6%

- Small sample size, 3 6 months of data collected so far.
- DE 80% of faults EV Drivetrain (new design not systematic in EVs).
- Diesel, older, 80% of faults are body/lift related.
- Most faults could be improved by direct collaboration with DE.
- Currently the eRCVs are operating at a similar availability as the older RCVs.

Welsh ULEV – LA Engagement Workshop

Conclusions

- We have collected lots of data and characterised the performance window of the DE RCV and Bucher Sweeper.
- **DE's RCV has a range of 40 80 miles**, mainly dependent on bin collection density but temperature and topography are relevant as well.
- Bucher's 16t Sweeper provides 6 10 hours of operation, with the ratio of sweeping vs driving having the largest impact. Fan settings also influence largely the range.
- Yearly operation savings are £7,100 and can be easily doubled.
- Vehicles are being underutilised and savings can be increased by 500%.
- We look forward to getting data from different RRVs and RCVs this year to assess.

Performance Discussion Session

Programme Support

Welsh ULEV – LA Engagement Workshop

Programme Support – Financial

Grant Funding Over Purchase Costs

 Most zero emission vehicles in waste fleets are covered.

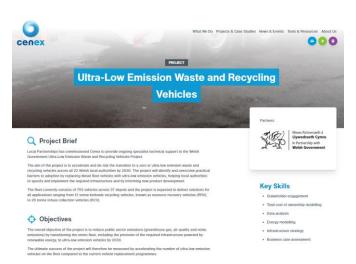
- Purchase costs are halved.
- Vehicle lifetime savings.

<u>Try Before You Buy (Vehicle Loan from Neighbouring Authority)</u>

eRCV

eSweeper

https://www.cenex.co.uk/projects-case-studies/ultra-low-emission-waste-and-recycling-vehicles/



Welsh ULEV – LA Engagement Workshop

Programme Support - Implementation

Programme Website

Support Tools

- Vehicle Round Planning Tools
- Electric Vehicle Planning Checklist

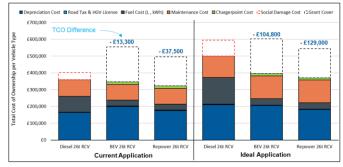
Insights

- ZE Vehicle Availability Catalogue
- Improving the Economic Performance of Electric RCVs
- Guidance
 - Infrastructure planning guidance and documents

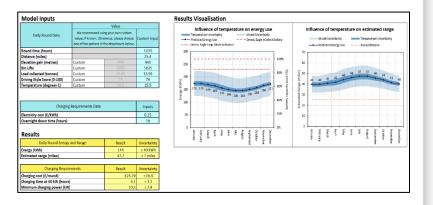
Programme Support – Implementation

Cenex' Support Tools

Easy step by step tool to make EV purchase and onboarding easier!



Programme Support


Cenex' Support Tools

Current and Potential eRCV Economic Performance¹. The figure below describes two scenarios. The first one considering the average operations of the eRCVs throughout Wales, and the second scenario shows the potential with optimised utilisation of the vehicles and charging regime. Both scenarios are inclusive of the Welsh Government purchase grant.

Improving Performance. The chart above shows that improving vehicle utilisation and operating practises can increase TCO savings by up to ~ 500%! Operating the vehicles over

Learn how to increase your cost savings from operating eRCVs by up to 500%

Simplify the planning of rounds and energy consumption for fleet/waste managers!

What support would be useful going forward?

Planned for this year

What support would be most effective?

Development of a project specific website (one-stop-shop)

Performance models & insights

Quarterly workshops & regular correspondence

Advice

Procurement support (vehicles & infra.)

Fleet transition planning worked examples

Wider round planning support to fit EVs

1-1 Expert advice

Training workshops

Cost modelling tools

Supplier days and events

Increased shared learning

Support Discussion

To join the Q&A Session please open link in chat.

Thank you for your time!

Contacts for Grant Applications

Andrew Bishop

Waste Strategy Advisor/Cynghorydd Strategaeth Gwastraff andrew.bishop@gov.wales

Mark Brown

Director - Climate mark.brown@localpartnerships.gov.uk

Contacts for Planning and Implementation Advice

Vicente Jofré Matamala

Assistant Technical Specialist – Zero and Low Emission Vehicles vicente.jofre@cenex.co.uk

Thank you for listening

Steve Carroll

Head of Transport, Cenex, steve.carroll@cenex.co.uk

